Matrix Operations in R - A Minimal Introduction

James H. Steiger
Department of Psychology and Human Development
Vanderbilt University

Matrix Operations in R - A Minimal Introduction

(1) Defining a Matrix in R

- Entering by Columns
- Entering by Rows
- Entering a Column or Row Vector

2 Extracting Pieces of a Matrix

- Extracting Individual Elements
- Extracting a Row of a Matrix
- Extracting a Column of a Matrix
- Extracting Several Rows and/or Columns
(3) Combining Matrices
- Joining Rows
- Joining Columns
(4) Basic Matrix Operations
- Matrix Addition and Subtraction
- Scalar Multiplication
- Matrix Multiplication
- Matrix Transposition
- Matrix Inversion

Matrix Algebra in R

Preliminary Comments

- This is a very basic introduction
- For some more challenging basics, you might examine Chapter 5 of An Introduction to R, the manual available from the Help PDF Manuals menu selection in the R program

Defining a Matrix in R

- Suppose you wish to enter, then view the following matrix \mathbf{A} in R

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

- You would use the R commands:

```
> A <- matrix(c(1,3,2,4),2,2)
```

$>\mathrm{A}$

$$
[, 1][, 2]
$$

$$
[1,] \quad 1 \quad 2
$$

$$
[2,] \quad 3 \quad 4
$$

- Note that the numbers are, by default, entered into the matrix columnwise, i.e., by column.

Defining a Matrix in R

- You can enter the numbers by row, simply by adding an optional input variable
- Here are the R commands:

```
> A <- matrix(c(1,2,3,4),2,2,byrow=TRUE)
```

$>\mathrm{A}$

	$[, 1]$	$[, 2]$
$[1]$,	1	2
$[2]$,	3	4

Entering a Column Vector

- To enter a $p \times 1$ column vector, simply enter a $p \times 1$ matrix
$>$ a <- matrix $(c(1,2,3,4), 4,1)$
$>$ a
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
- Row vectors are, likewise, entered as $1 \times q$ matrices

Extracting Individual Elements

- Individual elements of a matrix are referred to by their subscripts
- For example, consider a matrix correlation matrix \mathbf{R} given below
- To extract element $R_{3,1}$, we simply request $\mathrm{R}[3,1]$

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

> $\mathrm{R}[3,1]$
[1] 0.3

Extracting a Row of a Matrix

- To get an entire row of a matrix, you name the row and leave out the column
- For example, in the matrix R below, to get the first row, just enter $\mathrm{R}[1$,

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

```
> R[1,]
```

[1] 1.00 .40 .30 .3

Extracting a Column of a Matrix

- To get an entire column of a matrix, you name the column and leave out the row
- For example, in the matrix R below, to get the first column, just enter $\mathrm{R}[, 1]$

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

```
> R[,1]
```

[1] 1.00 .40 .30 .3

Extracting Several Rows and/or Columns

Example (Extracting Several Rows and/or Columns)
Examine the following examples to see how we can extract any specified range of rows and/or columns

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

```
> R[1:3,]
            [,1] [,2] [,3] [,4]
[1,] 1.0
[2,] 0.4 1.0
[3,] 0.3 0.2 1.0
> R[1:3,2:4]
            [,1] [,2] [,3]
[1,] 0.4 0.3 0.3
[2,]
```


Joining Rows

- On occasion, we need to build up matrices from smaller parts
- You can combine several matrices with the same number of columns by joining them as rows, using the rbind() command
- Here is an example

Joining Rows

```
Example (Joining Rows)
> A <- matrix(c(1,3,3,9,6,5),2,3)
> B <- matrix(c(9,8,8,2,9,0),2,3)
>A
lrrr
>B
[,1] [,2] [,3]
[1,] 9 8 9
[2,] 8
> rbind(A,B)
    [,1] [,2] [,3]
[1,] 1 3 6
[2,] 3
[3,] 9
[4,] 8
> rbind(B,A)
    [,1] [,2] [,3]
[1,] 9 8 9
[2,] 
[3,] 1
[4,] 3
```


Joining Columns

- In similar fashion, you can combine several matrices with the same number of rows by joining them as columnss, using the cbind() command
- Here is an example

Joining Columns

Example (Joining Columns)
$>\mathrm{A}<-\operatorname{matrix}(\mathrm{c}(1,3,3,9,6,5), 2,3)$
$>\mathrm{B}<-\operatorname{matrix}(\mathrm{c}(9,8,8,2,9,0), 2,3)$
$>\mathrm{A}$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	6
$[2]$,	3	9	5

> B

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	9	8	9

[2,] $8 \quad 2 \quad 0$
$>$ cbind (A, B)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	1	3	6	9	8	9
$[2]$,	3	9	5	8	2	0
$>$	cbind (B,A)					
$[1]$	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	9	8	9	1	3	6
$[2]$,	8	2	0	3	9	5

Matrix Addition and Subtraction

Adding or subtracting matrices is natural and straightforward, as the example below shows

```
Example
> A <- matrix(c(1,3,3,9),2,2)
> B <- matrix(c (9, 8,8,2), 2, 2)
> A
[,1] [,2]
[1,] 1 3
[2,] 3 9
> B
[_ [,1] [,2]
[2,] 8 2
>A+B
        [,1] [,2]
[1,] 10 11
[2,] 11 11
> A-B
    [,1] [,2]
[1,] -8 -5
[2,] -5 7
```


Scalar Multiplication

To multiply a matrix by a scalar, simply use the multiplication symbol * For example, Example (Scalar Multiplication)

```
> A
    [,1] [,2]
[1,] 1 3
[2,] 3 9
> 3*A
    [,1] [,2]
[1,] 3 9
[2,] 9 27
```


Matrix Multiplication

Matrix multiplication uses the \% $* \%$ command
Example (Matrix Multiplication)

$>\mathrm{A}$		
	[,1]	[,2]
[1,]	1	3
[2,]	3	9
> B		
	[,1]	[,2]
[1,]	9	8
[2,]	8	2
> $\mathrm{A} \%$ \% $\%$ B		
	[,1]	[,2]
[1,]	33	14
[2,]	99	42
> $\mathrm{B} \% \%$ \% A		
	[,1]	[,2]
[1,]	33	99
[2,]	14	42

Matrix Transposition

To transpose a matrix, use the $t()$ command

Example (Transposing a			
> A			
	[,1]	[,2]	[,3]
[1,]	1	3	6
[2,]	3	9	5
> B			
	[,1]	[,2]	[,3]
[1,]	9	8	9
[2,]	8	2	0
$>\mathrm{t}(\mathrm{A})$			
	[,1]		
[1,]	1	3	
[2,]	3	9	
[3,]	6	5	
> t (B)			
[,1] [,2]			
[1,]	9	8	
[2,]	8	2	
[3,]	9	0	

Matrix Inversion

- To invert a square matrix, use the solve() command
- In the example below, we illustrate a common problem - numbers that are really zero are only very close to zero due to rounding error
- When we compute the product $\mathbf{A A}^{-1}$, we should get the identity matrix \mathbf{I}, but instead we see that the off-diagonal elements are not quite zero.
- To cure this problem, you can use the zapsmall() function

Matrix Inversion

Example (Inverting a matrix)

```
> A
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 9 & 9 \\
{\([2]\),} & 3 & 6 & 1 \\
{\([3]\),} & 3 & 5 & 8
\end{tabular}
> solve(A)
            [,1] [,2] [,3]
[1,] -0.24855491 0.1560694 0.2601156
[2,] 0.12138728 0.1098266 -0.1502890
[3,] 0.01734104 -0.1271676 0.1213873
> A %*% solve(A)
                            [,1] [,2] [,3]
[1,] 1.000000e+00 0.000000e+00 0.000000e+00
[2,] -4.510281e-17 1.000000e+00 1.387779e-17
[3,] -2.775558e-17 -2.220446e-16 1.000000e+00
> zapsmall( A %*% solve(A))
    [,1] [,2] [,3]
[1,] 1 0 0
[2,] 0
[3,] 
```


Manipulating Diagonal Matrices

Extracting Diagonal Elements

- In many situations in multivariate statistics, we need to perform operations involving the diagonal elements of a matrix, or diagonal matrices, or both.
- R has a surprisingly versatile function, diag, that can perform several of the most important operations.
- Consider the symmetric correlation matrix defined below:

```
> Rxx <- matrix(c(1.0, 0.5, 0.4,
+ 0.5, 1.0, 0.3,
+ 0.4,0.3,1.0
+ ),3,3)
> Rxx
    [,1] [,2] [,3]
[1,] 1.0}00.5 0.
[2,] 0.5 1.0}00.
[3,] 0.4 0.3 1.0
```


Manipulating Diagonal Matrices

Extracting Diagonal Elements

- Suppose we wished to extract the diagonal entries of $\mathbf{R}_{\mathbf{x}} \mathbf{x}$.
- If the diag command is applied to a matrix, it extracts the diagonal entries in a vector.

```
> diag(Rxx)
```

[1] 111

- On the other hand, if you apply the diag function to a vector, the result is a diagonal matrix with diagonal entries equal to the elements of the vector.

```
> d<- diag(Rxx)
> diag(d)
    [,1] [,2] [,3]
[1,] 1 0 0
[2,] 0
[3,] 0}0
```


Manipulating Diagonal Matrices

Extracting the Diagonal into a Diagonal Matrix

- On several occasions we will want to extract the diagonal entries of a matrix, and creat a diagonal matrix composed of those elements.
- This can be accomplished directly as follows:
> D <- diag (diag (Rxx))
$>\mathrm{D}$

$$
[, 1][, 2][, 3]
$$

[1,] 100
$[2] \quad 0 \quad 1 \quad$,
[3,] $0 \quad 0 \quad 1$

Manipulating Diagonal Matrices

Extracting the Diagonal into a Diagonal Matrix

- An odd but useful variation on the diag command allows one to create an identity matrix of any order.
- To create a $p \times p$ identity matrix, simply enter the integer p as input to the diag function, as demonstrated below.
> diag(4)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	0	0	0
$[2]$,	0	1	0	0
$[3]$,	0	0	1	0
$[4]$,	0	0	0	1

